Examples
Explore real-world use cases and see PipeGen in action across different industries and scenarios.
Quick Examples
Basic Pipeline
bash
# Create and run a basic analytics pipeline
pipegen init basic-analytics
cd basic-analytics
pipegen deploy
pipegen run --dashboard
Load Testing
bash
# Simulate Black Friday traffic
pipegen run --message-rate 100 --duration 10m \
--traffic-pattern "2m-3m:500%,5m-7m:400%,8m-9m:600%" \
--dashboard --generate-report
Smart Consumer Examples
bash
# Auto-calculate expected messages (recommended)
pipegen run --duration 30s
# Producer sends 2,847 messages → Consumer expects 2,847 messages
# Precise control for testing
pipegen run --expected-messages 1000 --message-rate 200
# Consumer stops immediately after consuming exactly 1,000 messages
# Development with fast cycles
pipegen run --duration 10s --pipeline-timeout 2m
# Producer runs 10s, pipeline has 2m total to complete
# Production simulation with realistic timing
pipegen run --duration 5m --pipeline-timeout 30m --expected-messages 50000
# Long producer run with ample processing time
AI-Generated Pipeline
bash
# Let AI create a fraud detection system
pipegen init fraud-system --describe \
"Monitor credit card transactions, detect suspicious patterns using statistical analysis, and alert on potential fraud within 30 seconds" \
--domain "fintech"
Industry Use Cases
🛍️ E-commerce & Retail
Real-Time Product Recommendations
bash
pipegen init product-recommendations --describe \
"Track user interactions with products, calculate item similarity scores, maintain user preference profiles, and generate personalized recommendations in real-time" \
--domain "ecommerce"
Inventory Management
bash
pipegen init inventory-alerts --describe \
"Monitor product inventory levels across warehouses, track sales velocity, predict stockouts, and trigger reorder alerts when inventory falls below safety thresholds" \
--domain "ecommerce"
Customer Journey Analytics
bash
pipegen init customer-journey --describe \
"Analyze customer touchpoints across web and mobile, track conversion funnels from awareness to purchase, identify drop-off points, and calculate attribution models" \
--domain "ecommerce"
💰 Financial Services
Fraud Detection System
bash
pipegen init fraud-detection --describe \
"Analyze payment transactions in real-time, compare against customer spending patterns, detect anomalies using machine learning models, and flag suspicious transactions scoring above 0.85 confidence" \
--domain "fintech"
High-Frequency Trading
bash
pipegen init hft-signals --describe \
"Process market data feeds from multiple exchanges, calculate technical indicators like MACD and RSI, identify arbitrage opportunities, and generate trading signals with microsecond latency" \
--domain "fintech"
Risk Management
bash
pipegen init risk-monitoring --describe \
"Monitor trading positions in real-time, calculate VaR and portfolio exposure, track market volatility indicators, and trigger risk alerts when limits are exceeded" \
--domain "fintech"
🏭 Manufacturing & IoT
Predictive Maintenance
bash
pipegen init predictive-maintenance --describe \
"Monitor industrial equipment sensors for temperature, vibration, and pressure, detect anomaly patterns, predict equipment failures using historical data, and schedule maintenance before breakdowns occur" \
--domain "manufacturing"
Quality Control
bash
pipegen init quality-monitoring --describe \
"Process real-time production line data, monitor product quality metrics, detect defects using statistical process control, and trigger quality alerts when tolerances are exceeded" \
--domain "manufacturing"
Supply Chain Optimization
bash
pipegen init supply-chain --describe \
"Track shipments across global supply chain, monitor delivery performance, predict delays based on weather and traffic data, and optimize routing for cost and time efficiency" \
--domain "logistics"
🎮 Gaming & Entertainment
Player Behavior Analytics
bash
pipegen init player-analytics --describe \
"Track player actions and progression in real-time, identify engagement patterns, predict player churn, and generate personalized offers to improve retention" \
--domain "gaming"
Dynamic Game Balancing
bash
pipegen init game-balance --describe \
"Monitor gameplay metrics like win rates and match duration, analyze player skill distribution, detect balance issues, and recommend game parameter adjustments" \
--domain "gaming"
Live Tournament Analytics
bash
pipegen init tournament-stats --describe \
"Process live tournament data including player performance, match statistics, audience engagement, and generate real-time leaderboards and analytics dashboards" \
--domain "gaming"
🏥 Healthcare & Life Sciences
Patient Monitoring
bash
pipegen init patient-monitoring --describe \
"Process vital signs from patient monitors including heart rate, blood pressure, and oxygen levels, detect critical value changes, and trigger immediate alerts for medical staff" \
--domain "healthcare"
Drug Discovery Analytics
bash
pipegen init drug-discovery --describe \
"Analyze molecular compound data from research experiments, identify promising candidates based on efficacy and safety profiles, and track clinical trial progress" \
--domain "healthcare"
📱 Social Media & Content
Content Moderation
bash
pipegen init content-moderation --describe \
"Analyze user-generated content in real-time, detect harmful or inappropriate material using NLP models, calculate toxicity scores, and flag content for human review" \
--domain "social"
Trend Detection
bash
pipegen init trend-detection --describe \
"Monitor social media posts and engagement metrics, identify viral content and emerging trends, track hashtag popularity, and generate real-time trend reports" \
--domain "social"
Traffic Pattern Examples
Black Friday Simulation
bash
# E-commerce traffic during major sales event
pipegen run --message-rate 200 --duration 30m \
--traffic-pattern "5m-10m:400%,15m-20m:600%,25m-28m:500%" \
--dashboard
Breaking News Event
bash
# News website traffic spike
pipegen run --message-rate 100 --duration 15m \
--traffic-pattern "2m-8m:800%,10m-12m:300%" \
--dashboard --generate-report
Business Hours Pattern
bash
# Gradual increase during business hours
pipegen run --message-rate 50 --duration 20m \
--traffic-pattern "2m-4m:150%,6m-8m:200%,10m-12m:300%,14m-16m:250%,18m-20m:150%" \
--dashboard
Gaming Event Launch
bash
# Massive spike when new game features launch
pipegen run --message-rate 75 --duration 12m \
--traffic-pattern "3m-8m:700%,10m-12m:400%" \
--dashboard
Testing Scenarios
Performance Benchmarking
bash
# Establish baseline performance
pipegen run --message-rate 100 --duration 10m --generate-report
# Test with 2x load
pipegen run --message-rate 200 --duration 10m --generate-report
# Test with extreme spikes
pipegen run --message-rate 100 --duration 10m \
--traffic-pattern "2m-4m:1000%" --dashboard
Failure Testing
bash
# Test recovery from high load
pipegen run --message-rate 50 --duration 8m \
--traffic-pattern "2m-3m:2000%,5m-6m:1500%" \
--dashboard
# Sustained high load
pipegen run --message-rate 100 --duration 10m \
--traffic-pattern "2m-8m:500%" \
--dashboard --generate-report
Capacity Planning
bash
# Model expected growth over time
pipegen run --message-rate 100 --duration 20m \
--traffic-pattern "5m-15m:200%" \
--dashboard --generate-report
# Test autoscaling response
pipegen run --message-rate 50 --duration 15m \
--traffic-pattern "3m-5m:400%,8m-10m:600%,12m-14m:300%" \
--dashboard
Integration Examples
CI/CD Pipeline Testing
bash
#!/bin/bash
# ci-test.sh - Automated pipeline testing
set -e
echo "🚀 Starting pipeline validation..."
# Create test pipeline
pipegen init ci-test-$(date +%s) --describe "Simple analytics for CI testing"
cd ci-test-*
# Validate project
pipegen validate
# Deploy local stack
pipegen deploy --startup-timeout 2m
# Run with traffic patterns and generate report
pipegen run --message-rate 100 --duration 3m \
--traffic-pattern "30s-90s:300%" \
--generate-report --reports-dir ./ci-reports
# Check for errors in report
if grep -q "ERROR" ci-reports/*.html; then
echo "❌ Pipeline test failed - errors detected"
exit 1
fi
echo "✅ Pipeline test passed"
Monitoring Integration
bash
# Export metrics to external monitoring
pipegen run --dashboard --message-rate 100 --duration 10m &
PIPELINE_PID=$!
# Collect metrics every 30 seconds
while kill -0 $PIPELINE_PID 2>/dev/null; do
curl -s http://localhost:3000/api/metrics | \
jq '.producer.rate' | \
curl -X POST https://monitoring.company.com/metrics \
-H "Content-Type: application/json" -d @-
sleep 30
done
Multi-Environment Testing
bash
# Test across different configurations
environments=("local" "staging" "production")
for env in "${environments[@]}"; do
echo "🌍 Testing in $env environment"
pipegen run --config ".pipegen-$env.yaml" \
--message-rate 100 --duration 5m \
--traffic-pattern "1m-2m:200%,3m-4m:300%" \
--generate-report --reports-dir "./reports-$env"
done
Advanced Use Cases
Multi-Pipeline Orchestration
bash
# Run multiple pipelines simultaneously
pipegen run --dashboard-port 3001 --project-dir ./pipeline-1 &
pipegen run --dashboard-port 3002 --project-dir ./pipeline-2 &
pipegen run --dashboard-port 3003 --project-dir ./pipeline-3 &
# Aggregate monitoring
pipegen dashboard --port 3000 --aggregate-ports 3001,3002,3003
Custom Schema Testing
bash
# Test with real production schemas
pipegen init schema-validation \
--input-schema ./production-events.avsc \
--describe "Validate production event processing"
pipegen run --message-rate 1000 --duration 10m \
--dashboard --generate-report
Performance Profiling
bash
# Profile different message rates
rates=(50 100 200 500 1000)
for rate in "${rates[@]}"; do
echo "📊 Testing at $rate msg/sec"
pipegen run --message-rate $rate --duration 2m \
--generate-report --reports-dir "./profile-reports" \
--traffic-pattern "30s-90s:200%"
done
Sample Outputs
Dashboard Metrics
When running with --dashboard
, you'll see real-time metrics like:
- Producer Rate: 847 msg/sec (↑ in traffic spike)
- Consumer Rate: 845 msg/sec (lag: 2 messages)
- End-to-End Latency: P95 = 12ms, P99 = 28ms
- Error Rate: 0.02% (2 errors in last minute)
- System Health: ✅ All components healthy
Report Generation
Generated HTML reports include:
- Executive Summary: Pipeline completed successfully, processed 50,000 messages
- Performance Charts: Throughput trends, latency percentiles, error rates
- Traffic Analysis: Pattern compliance, peak performance metrics
- Resource Utilization: CPU, memory, network usage during execution
- Recommendations: Optimal configurations, scaling suggestions
Common Patterns
Development Workflow
bash
# 1. Create and validate
pipegen init my-pipeline --describe "..."
pipegen validate --check-connectivity
# 2. Quick test
pipegen run --message-rate 10 --duration 1m
# 3. Load test
pipegen run --message-rate 100 --duration 5m \
--traffic-pattern "1m-2m:300%" --dashboard
# 4. Generate documentation
pipegen run --generate-report --duration 10m
Production Validation
bash
# 1. Baseline test
pipegen run --message-rate 100 --duration 10m --generate-report
# 2. Stress test with spikes
pipegen run --message-rate 100 --duration 15m \
--traffic-pattern "3m-5m:500%,8m-10m:700%,12m-14m:400%" \
--dashboard --generate-report
# 3. Sustained load test
pipegen run --message-rate 200 --duration 30m --generate-report
Next Steps
- Getting Started - Create your first pipeline
- AI Generation - Use AI to generate pipelines
- Traffic Patterns - Master load testing techniques
- Dashboard - Explore monitoring capabilities
- Commands - Learn all available commands