Performance Optimization
Learn how to optimize your PipeGen pipelines for maximum throughput, minimum latency, and efficient resource utilization.
Performance Fundamentals
Key Metrics
- Throughput: Messages processed per second
- Latency: End-to-end processing time
- Resource Utilization: CPU, memory, network, and disk usage
- Error Rate: Percentage of failed message processing
Performance Trade-offs
- Throughput vs Latency: Higher throughput often increases latency
- Memory vs Processing Speed: More memory can improve processing speed
- Consistency vs Performance: Stronger consistency guarantees impact performance
Kafka Optimization
Producer Configuration
yaml
kafka:
producer:
# Increase batch size for higher throughput
batch_size: 65536
# Add small delay to allow batching
linger_ms: 10
# Use compression to reduce network usage
compression_type: "lz4"
# Optimize for throughput
acks: "1" # Use "all" for stronger consistency
# Increase buffer memory for high-volume scenarios
buffer_memory: 67108864 # 64MB
# Optimize retries
retries: 2147483647
retry_backoff_ms: 100
Consumer Configuration
yaml
kafka:
consumer:
# Increase fetch size for better throughput
fetch_min_bytes: 50000
fetch_max_wait_ms: 500
# Process more records per poll
max_poll_records: 1000
# Optimize memory usage
receive_buffer_bytes: 65536
send_buffer_bytes: 131072
# Parallel processing
max_poll_interval_ms: 300000
Topic Configuration
bash
# Create topic with optimal partitions
kafka-topics.sh --create \
--topic high-throughput-topic \
--partitions 12 \
--replication-factor 3 \
--config segment.ms=86400000 \
--config retention.ms=259200000
Flink Optimization
Parallelism Configuration
yaml
flink:
# Set parallelism based on available cores and data volume
parallelism: 8
# Allow dynamic scaling
max_parallelism: 128
# Operator-specific parallelism in SQL
# SELECT /*+ OPTIONS('sink.parallelism'='4') */ ...
Memory Configuration
yaml
flink:
memory:
# JobManager memory allocation
jobmanager: "2gb"
# TaskManager memory allocation
taskmanager: "8gb"
# Network buffers for high throughput
network: "256mb"
# Managed memory for state and caching
managed:
fraction: 0.4
# JVM settings
jvm_args:
- "-XX:+UseG1GC"
- "-XX:MaxGCPauseMillis=200"
- "-XX:+UnlockExperimentalVMOptions"
- "-XX:+UseCGroupMemoryLimitForHeap"
Checkpointing Optimization
yaml
flink:
checkpoint:
# Balance between recovery time and performance
interval: "60s" # Increase for higher throughput
timeout: "10m"
# Minimize checkpoint overhead
min_pause: "10s"
max_concurrent: 1
# Use incremental checkpoints for large state
incremental: true
# Optimize storage
storage: "s3://checkpoint-bucket/checkpoints"
compression: true
State Backend Optimization
yaml
flink:
state:
backend: "rocksdb" # Better for large state
rocksdb:
# Optimize RocksDB performance
block_cache_size: "256mb"
write_buffer_size: "128mb"
max_write_buffer_number: 4
# Compaction settings
compaction_style: "level"
max_background_jobs: 4
SQL Optimization
Query Optimization
sql
-- Use appropriate time windows
SELECT
user_id,
COUNT(*) as event_count,
AVG(value) as avg_value
FROM source_table
WHERE event_time > NOW() - INTERVAL '1' HOUR
GROUP BY
user_id,
TUMBLE(event_time, INTERVAL '5' MINUTE)
HAVING COUNT(*) > 10; -- Filter early
-- Optimize joins with proper hints
SELECT /*+ USE_HASH_AGG, BROADCAST(dim) */
fact.user_id,
dim.user_name,
SUM(fact.amount)
FROM fact_table fact
JOIN dimension_table /*+ OPTIONS('lookup.cache'='SYNC') */ dim
ON fact.user_id = dim.user_id;
Index Usage
sql
-- Create indexes for faster lookups
CREATE TABLE user_lookup (
user_id STRING,
user_name STRING,
created_at TIMESTAMP(3),
PRIMARY KEY (user_id)
) WITH (
'connector' = 'jdbc',
'lookup.cache' = 'SYNC',
'lookup.max-retries' = '3'
);
Resource Optimization
CPU Optimization
TaskManager Configuration
yaml
flink:
taskmanager:
# Number of task slots per TaskManager
slots: 4
# CPU allocation per slot
cpu_cores: 2.0
# Thread pool sizes
rpc_threads: 4
query_threads: 4
Processing Optimization
sql
-- Use parallel processing hints
SELECT /*+ OPTIONS('sink.parallelism'='8') */
user_id,
SUM(amount)
FROM high_volume_stream
GROUP BY user_id;
-- Optimize windowing
SELECT
user_id,
SUM(amount) as total
FROM events
GROUP BY
user_id,
TUMBLE(event_time, INTERVAL '1' MINUTE) -- Smaller windows = higher parallelism
Memory Optimization
Memory Pool Configuration
yaml
flink:
memory:
# Heap memory allocation
heap:
size: "6gb"
# Off-heap memory for network buffers
off_heap:
size: "2gb"
# Managed memory for RocksDB
managed:
size: "4gb"
# Direct memory for serialization
direct:
size: "1gb"
Memory Usage Best Practices
- Use object reuse to reduce GC pressure
- Optimize serialization with custom serializers
- Monitor memory usage with metrics
- Use incremental checkpoints for large state
Network Optimization
Network Buffer Configuration
yaml
flink:
network:
# Number of network buffers
buffers_per_channel: 8
extra_buffers_per_gate: 8
# Buffer size
buffer_size: "32kb"
# Buffer timeout for low latency
buffer_timeout: "100ms"
Network Topology
- Co-locate related processing to reduce network overhead
- Use local storage for checkpoints when possible
- Configure proper network bandwidth allocation
Performance Monitoring
Key Performance Indicators
yaml
monitoring:
metrics:
# Throughput metrics
- "flink_taskmanager_job_task_operator_numRecordsInPerSecond"
- "flink_taskmanager_job_task_operator_numRecordsOutPerSecond"
# Latency metrics
- "flink_taskmanager_job_latency_source_id_operator_id_operator_subtask_index_latency"
# Resource metrics
- "flink_memory_heap_used"
- "flink_cpu_usage"
# Checkpoint metrics
- "flink_jobmanager_job_lastCheckpointDuration"
- "flink_jobmanager_job_lastCheckpointSize"
Performance Dashboard
Create Grafana dashboards to monitor:
json
{
"dashboard": {
"title": "PipeGen Performance",
"panels": [
{
"title": "Throughput (msg/s)",
"type": "graph",
"targets": [
{
"expr": "rate(flink_taskmanager_job_task_operator_numRecordsInPerSecond[5m])"
}
]
},
{
"title": "Processing Latency",
"type": "graph",
"targets": [
{
"expr": "flink_taskmanager_job_latency_source_id_operator_id_operator_subtask_index_latency"
}
]
},
{
"title": "Memory Usage",
"type": "graph",
"targets": [
{
"expr": "flink_memory_heap_used / flink_memory_heap_max * 100"
}
]
}
]
}
}
Performance Testing
Load Testing Strategy
bash
# Generate test load
pipegen run \
--messages 1000000 \
--rate 10000 \
--traffic-pattern "0:1000,300:10000,600:5000,900:15000" \
--config performance-test.yaml
# Monitor during test
pipegen check --watch --interval 10s
Benchmarking
yaml
# benchmark.yaml
benchmark:
scenarios:
- name: "high_throughput"
messages: 10000000
rate: 50000
duration: "10m"
- name: "low_latency"
messages: 1000000
rate: 1000
latency_target: "10ms"
- name: "mixed_load"
traffic_pattern: "0:1000,120:10000,240:500,360:20000"
duration: "20m"
Scaling Strategies
Horizontal Scaling
yaml
# Scale TaskManagers
flink:
taskmanager:
replicas: 8
slots: 4
# Scale Kafka partitions
kafka:
topics:
input:
partitions: 16
replication_factor: 3
Vertical Scaling
yaml
# Increase resources per node
flink:
memory:
taskmanager: "16gb"
cpu:
taskmanager: 8
Auto-scaling
yaml
# Kubernetes HPA configuration
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: flink-taskmanager-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: flink-taskmanager
minReplicas: 2
maxReplicas: 20
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
Troubleshooting Performance Issues
Common Performance Problems
High Latency
bash
# Check processing backlog
pipegen dashboard --metrics latency
# Analyze checkpoint duration
curl http://jobmanager:8081/jobs/overview | jq '.jobs[0].duration'
# Monitor network buffers
grep "network buffer" flink-taskmanager.log
Low Throughput
bash
# Check parallelism utilization
pipegen check --verbose | grep -i parallel
# Monitor Kafka consumer lag
kafka-consumer-groups.sh --bootstrap-server kafka:9092 \
--describe --group pipegen-consumer
# Check resource utilization
docker stats flink-taskmanager
Memory Issues
bash
# Check heap usage
jstat -gc $(pgrep -f taskmanager) 5s
# Monitor off-heap memory
grep "Direct memory" flink-taskmanager.log
# Check for memory leaks
jmap -histo $(pgrep -f taskmanager) | head -20
Performance Tuning Checklist
- [ ] Set appropriate parallelism levels
- [ ] Configure memory pools optimally
- [ ] Tune Kafka producer/consumer settings
- [ ] Optimize SQL queries and operators
- [ ] Enable incremental checkpoints
- [ ] Monitor key performance metrics
- [ ] Test with realistic load patterns
- [ ] Plan for horizontal scaling
- [ ] Implement auto-scaling policies
- [ ] Regular performance reviews